
nn4mc

Sep 04, 2020

NN4MC

1 About 3
1.1 Why nn4mc? . 3

2 nn4mc_cpp 5

3 Installation Guide 7
3.1 Get all Dependencies in One Step . 7
3.2 HDF5 . 8
3.3 Installing the boost library . 8
3.4 Installing nlohmann/json . 8

4 Tutorials 11
4.1 Getting Started . 11
4.2 Using your HDF5 File . 12

5 Guide for Devs 13
5.1 Main Structure of the Code . 13
5.2 data_structues/Tensor . 13
5.3 Data Structures . 14
5.4 Parser . 14
5.5 Code Generator . 14
5.6 data_structures/Weight . 14
5.7 data_structures/Layer . 14
5.8 data_structures/NeuralNetwork . 15
5.9 parser/HDF5Parser . 15
5.10 parser/PickleParser . 15

6 nn4mc_py 17

7 Installation 19

8 Using nn4mc_py 21

9 Development 23

10 Examples 25

11 Tutorials 27

i

12 Using Generated Code 29
12.1 Arduino . 29

13 Testing Instructions 31
13.1 Arduino . 31
13.2 ESP-IDF . 31

14 Indices and tables 33

ii

nn4mc

nn4mc is a software package that builds C code for neural networks to run on off-the-shelf microcontrollers!

NN4MC 1

nn4mc

2 NN4MC

CHAPTER 1

About

1.1 Why nn4mc?

nn4mc bridges the gap between high level neural network training in fully capable PCs and microcontrollers.

We present a library to automatically embed signal processing and neural network predictions into the
material robots are made of. Deep and shallow neural network models are first trained offline using state-
of-the-art machine learning tools and then transferred onto general purpose microcontrollers that are co-
located with a robot’s sensors and actuators. We validate this approach using multiple examples: a smart
robotic tire for terrain classification, a robotic finger sensor for load classification and a smart composite
capable of regressing impact source localization. In each example, sensing and computation are embedded
inside the material, creating artifacts that serve as stand-in replacement for otherwise inert conventional
parts. The open source software library takes as inputs trained model files from higher level learning
software, such as Tensorflow/Keras, and outputs code that is readable in a microcontroller that supports
C. We compare the performance of this approach for various embedded platforms. In particular, we show
that low-cost off-the-shelf microcontrollers can match the accuracy of a desktop computer, while being
fast enough for real-time applications at different neural network configurations. We provide means to
estimate the maximum number of parameters that the hardware will support based on the microcontroller’s
specifications.

Make sure that the first layer in the neural network specifies the input_shape field when using Tensorflow
2.0 in order to get an appropriately functioning result.

Aguasvivas Manzano, Sarah, et al. “Embedded Neural Networks for Robot
→˓Autonomy.” International Symposium on Robotics Research, 2019.

Or

Manzano, S. A., Hughes, D., Simpson, C., Patel, R., & Correll, N. (2019).
→˓Embedded Neural Networks for Robot Autonomy. arXiv preprint arXiv:1911.
→˓03848.

Or

3

nn4mc

@misc{nn4mc,
title={Embedded Neural Networks for Robot Autonomy},
author={Sarah Aguasvivas Manzano and Dana Hughes and Cooper Simpson

→˓and Radhen Patel and Nikolaus Correll},
year={2019},
eprint={1911.03848},
archivePrefix={arXiv},
primaryClass={cs.RO}

}

4 Chapter 1. About

CHAPTER 2

nn4mc_cpp

nn4mc_cpp. . .

5

nn4mc

6 Chapter 2. nn4mc_cpp

CHAPTER 3

Installation Guide

To get setup with nn4mc we first need the following dependencies:

• HDF5, pickle or the preferred library depending on the source

• Boost

• g++

• cmake

• json

3.1 Get all Dependencies in One Step

Go to the scripts/ folder and type:

3.1.1 Linux

./scripts/setup_linux_mint.sh

3.1.2 MacOS

./scripts/setup_macos.sh

7

nn4mc

3.2 HDF5

3.2.1 Installing HDF5 >=1.10.4 from conda

If you are a conda user, the simplest way to obtain a version of hdf5 that is stable across platforms is using conda. The
command to type is:

conda install -c anaconda hdf5

3.2.2 Installing HDF5 < 1.8.16 from HDF5 Group

This is a more manual installation. This installation will lead a very stable Linux parsing in HDF5, but leads to some
compatibility problems for MacOS. Go to this website: HDF5 Group or type:

wget http://h5cpp.org/download/hdf5-1.10.4.tar.gz

Untar the file as in :

tar -xvzf hdf5-1.10.4.tar.gz

Configure the files as in:

cd hdf5-1.10.4 && ./configure --prefix=/usr/local && make -j2 && sudo make install

Then download the deb files:

wget http://h5cpp.org/download/h5cpp_1.10.4.1_amd64.deb

Then type:

sudo dpkg -i h5cpp_1.10.4.1_amd64.deb

cd /usr/lib/x86_64-linux-gnu

sudo ln -s libhdf5_serial.so.8.0.2 libhdf5.so
sudo ln -s libhdf5_serial_hl.so.8.0.2 libhdf5_hl.so

3.3 Installing the boost library

From Linux:

sudo apt-get install libboost-all-dev

From MacOS:

brew install boost

3.4 Installing nlohmann/json

Go back to nn4mc and go to the lib/ folder.

8 Chapter 3. Installation Guide

https://www.hdfgroup.org/downloads/hdf5

nn4mc

git clone https://github.com/nlohmann/json nlohmann_json

3.4. Installing nlohmann/json 9

nn4mc

10 Chapter 3. Installation Guide

CHAPTER 4

Tutorials

4.1 Getting Started

The first step after the installation is done is to create a build folder and build our first example to make sure you are
setup! Go to the root nn4mc folder and create a build/ folder.

cd path/to/nn4mc
mkdir build
cd build

Now, you are ready to make your first example project. We recommend to add your hdf5 files under the data/ folder
to keep your version of the repository clean. However, you are free to store that file wherever you’d like (inside or
outside the folder, as long as you can provide the path). We added some sample hdf5 files under data/. To test your
installation do the following:

cd build
cmake ..
make

The sample code will generate many executables under build/, the one we recommend testing because it covers all the
necessary components is called generator_test_file. Run it by typing in the command line:

./generator_test_file

If this works, it will generate code in the root folder with the file name specified. By default, this filename is called:
example_out/ and is located at the root folder of nn4mc.

The code contained in the generated file is ready to be dragged and dropped into an IDE, for example, the Arduino
IDE as seen below.

11

nn4mc

4.2 Using your HDF5 File

The example code contained under examples/generator_test_actual_file.cpp contains all the necessary components to
create your C files. Here is an example on how to use this library on hdf5 files. In this example we generate the code
necessary to implement lenet in a microcontroller:

#include <iostream>
#include <vector>
#include <cstdlib>
#include "parser/HDF5Parser.h"
#include "datastructures/tensor.h"
#include "generator/weight_generator.h"
#include "datastructures/weights.h"
#include "generator/layer_generator.h"
#include "generator/code_generator.h"

#include "datastructures/Layer.h"
#include "datastructures/NeuralNetwork.h"

int main()
{

HDF5Parser P("../data/lenet.hdf5");
P.parse();
NeuralNetwork* nn = P.get_neural_network();
nn->BFS();
nn->reset();

CodeGenerator* code_gen = new CodeGenerator(nn, "../templates/esp32", "../example_
→˓out");

code_gen->generate();
code_gen->dump();

delete nn;
return 0;

}

In the future, we expect to remove some of these necessary lines of code in a way that the end-user does not have to
declare so many pointers.

[TBD]

12 Chapter 4. Tutorials

CHAPTER 5

Guide for Devs

5.1 Main Structure of the Code

nn4mc is composed by the following modules:

data_structures Contains Tensors, Weights, Layers and NeuralNetwork.

parser Parses an incoming file to output a NeuralNetwork object.

code_generator Takes in a NeuralNetwork object to generate files with C/C++ code.

5.2 data_structues/Tensor

Tensor objects are mostly used in this work when we need to store large arrays, especially of the float or double
variable types that occupy lots of space. What makes a Tensor special is that any matrix or array that is converted into
a tensor becomes part of a large sequence of characters and this object type makes us capable of converting to and
from said sequence of characters. For example, instead of having float arr[3] = {1.000, 1.000, 1.000} we have a tensor
that under the hood stores our array into a slightly more complicated verion but similar to “1.00001.0001.000” . To
declare a Tensor we need two things: A std::vector<int> that indicates the sizes of each dimension in the tensor. Then,
to assign numerical values at specific points in a Tensor, we use a pointer to the tensor and the assignment operator.
Here is an example of how to declare and populate a Tensor.

std::vector<int> dimensions;
dimensions.push_back(5);
dimensions.push_back(2); // a 5x2 matrix

Tensor<double> T = Tensor<double>(dimensions);

for(int i=0; i<dimensions[0]; i++)
{

for(int j=0; j<dimensions[1]; j++)
{

(continues on next page)

13

nn4mc

(continued from previous page)

T(i,j) = i*dimensions[1] + j;
}

}

5.3 Data Structures

The data_structures module in nn4mc contains all the built-in data structures, such as weights, layers, tensors and
neural networks.

5.4 Parser

Parser is the first interface between the model file and nn4mc this is independent of code_generator, however,
code_generator takes as input an object that may be generated using a Parser. It takes as input the file that con-
tains the model and outputs a NeuralNetwork object with all the complete information.

5.5 Code Generator

code_generator takes as input the NeuralNetwork object generated and populated using any of the Parser instances
and outputs a set of C/C++ files with all the code that can execute the neural network operations.

5.6 data_structures/Weight

Weights contain a single Tensor. Even though layers contain both weights and biases, these weights and biases
are saved as instances of weight. This means that a layer will have two pointers to weight objects; one for
the weights and one for the biases. Weights have a specific method that might come in handy and it is called
Weight::get_weight_tensor(). This allows us to copy the values for the weight tensor.

5.7 data_structures/Layer

Layers are the most functional objects for neural networks. Different layer types will yield different outputs and will
process differently the data, e.g. a fully connected (Dense) layer’s output will be different from a convolutional layer
output. To declare a new layer we just instantiate the name of the layer type because layer type objects derive from
Layer, which is an abstract class. Currently, the layer type objects that can be instantiated are the following:

Dense This is a fully connected or dense layer. An MLP will have only Dense layers.

Activation Sometimes Keras users add activations as if they were independent layers. This accounts for
when the user does that.

Conv1D Performs 1D convolutions for 1D signal processing. This object fills out all the required argu-
ments needed for these layer types.

Conv2D Contains all the necessary components to perform 2D convolutions.

MaxPooling1D Contains all the necessary components to perform 1D maxpooling.

MaxPooling2D Contains all the necessary components to perform 2D maxpooling.

14 Chapter 5. Guide for Devs

nn4mc

Activation Contains all the necessary components to perform activation layers as separate layers.

Dropout Contains all the necessary components to at least read dropout layers even though the feedfor-
ward process does not require any additional processing from the dropout part.

In the future, we will add the following layer types:

GRU Will contain the necessary components to perform GRUs.

LSTM Will contain the necessary components to perform LSTMs.

SimpleRNN Will contain the necessary components to perform simple RNNs.

5.8 data_structures/NeuralNetwork

NeuralNetwork is a directed graph that can be transversed using BFS. Each node of NeuralNetwork points at a layer
type object and at a weight and bias tensor.

5.9 parser/HDF5Parser

HDF5Parser takes as input an .hdf5 file and extracts all the information to output a NeuralNetwork object with all of
the necessary pieces filled out from the information in the file.

5.10 parser/PickleParser

PickleParser will soon be a capability in nn4mc. This will take as input a .pth file coming from PyTorch and will
generate the same neural network that HDF5Parser exports.

5.8. data_structures/NeuralNetwork 15

nn4mc

16 Chapter 5. Guide for Devs

CHAPTER 6

nn4mc_py

nn4mc_py. . .

17

nn4mc

18 Chapter 6. nn4mc_py

CHAPTER 7

Installation

This will talk about installing nn4mc_py

19

nn4mc

20 Chapter 7. Installation

CHAPTER 8

Using nn4mc_py

This will discuss using nn4mc_py

21

nn4mc

22 Chapter 8. Using nn4mc_py

CHAPTER 9

Development

This will discuss ongoing development and how to get involved.

23

nn4mc

24 Chapter 9. Development

CHAPTER 10

Examples

25

nn4mc

26 Chapter 10. Examples

CHAPTER 11

Tutorials

27

nn4mc

28 Chapter 11. Tutorials

CHAPTER 12

Using Generated Code

12.1 Arduino

First, open a new sketch in Arduino, then, open all the files that were generated using nn4mc in Arduino.

The following code is an example of what it would take to get nn4mc to work on your Arduino code. In this example,
we allocate and send to the neural network an input of ones. This code looks as follows:

First, create the prototypes for the functions that we will be using from nn4mc:

void buildLayers();
float * fwdNN(float* data);

In the setup function after we begin our serial port, we call the function buildLayers(). This function will initialize all
the layers and create the necessary components for our feed forward.

void setup() {
Serial.begin(115200); // feel free to adjust this as desired
buildLayers();

}

In the loop function, after we collect our input, we call fwdNN(input), which is the function that will output a pointer.
This pointer will contain the output data from the neural network. You can access this output as a regular array, for
example, output[0] indicates the first element in the output layer and so forth. In the following example, we have a
neural network whose input layer is is of size (None, 10, 1) and output size (3).

void loop() {

float * input= (float*)malloc(10*sizeof(float));
for (int i=0; i<10; i++) input[i] = 1.0;

float * output;

(continues on next page)

29

nn4mc

(continued from previous page)

output = fwdNN(input);

for (int i=0; i<3; i++) {
Serial.print(output[i]);
Serial.print(" ");

}

Serial.println();

free(output); // output needs to be freed for best performance. Please do not
→˓free input.

delay(1);
}

30 Chapter 12. Using Generated Code

CHAPTER 13

Testing Instructions

13.1 Arduino

You can start with a trained Keras file, run it through nn4mc using the instructions above and import the code in
Arduino. Make sure you test the specific layers. Use loadModel.py under data to compare against the actual Keras
results/outputs at specific places within the neural network. We usually test the performance of the layer by sending
an array of ones as input to the neural newtork and seeing how faithful the results should be. There should be a 1:1
fidelity with those results since both languages use float32 (Arduino serial monitor sometimes rounds the numbers, so
you could just print the first 16 digits for the number or something like that). Whatever the result of the test is, write a
new issue with the following template:

FILE: filename.cpp
RESULT: passing/failing/need_further_test
TEST TYPE: Unit test/Integration test
DESCRIPTION:

input:
output:
desired output:
NOTES:
[write additional notes here]

RECOMMENDATIONS:
[write specific template fixes that you think might fix it (optional)]

Please do not try to modify source code or template codes, but if you find an error in the templates make sure to add it
as a recommendation.

13.2 ESP-IDF

[TBD]

31

nn4mc

32 Chapter 13. Testing Instructions

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

33

	About
	Why nn4mc?

	nn4mc_cpp
	Installation Guide
	Get all Dependencies in One Step
	HDF5
	Installing the boost library
	Installing nlohmann/json

	Tutorials
	Getting Started
	Using your HDF5 File

	Guide for Devs
	Main Structure of the Code
	data_structues/Tensor
	Data Structures
	Parser
	Code Generator
	data_structures/Weight
	data_structures/Layer
	data_structures/NeuralNetwork
	parser/HDF5Parser
	parser/PickleParser

	nn4mc_py
	Installation
	Using nn4mc_py
	Development
	Examples
	Tutorials
	Using Generated Code
	Arduino

	Testing Instructions
	Arduino
	ESP-IDF

	Indices and tables

